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A new criterion for the direct initiation of cylindrical or spherical detonations by a 
localized energy source is presented. The analysis is based on nonlinear curvature 
effects on the detonation structure. These effects are first studied in a quasi-steady-state 
approximation valid for a characteristic timescale of evolution much larger than the 
reaction timescale. Analytical results for the square-wave model and numerical results 
for an Arrhenius law of the quasi-steady equations exhibit two branches of solutions 
with a C-shaped curve and a critical radius below which generalized Chapman-Jouguet 
(CJ) solutions cannot exist. For a sufficiently large activation energy this critical radius 
is much larger than the thickness of the planar CJ detonation front (typically 300 times 
larger at ordinary conditions) which is the only intrinsic lengthscale in the problem. 
Then, the initiation of gaseous detonations by an ideal point energy source is 
investigated in cylindrical and spherical geometries for a one-step irreversible reaction. 
Direct numerical simulations show that the upper branch of quasi-steady solutions acts 
as an attractor of the unsteady blast waves originating from the energy source. The 
critical source energy, which is associated with the critical point of the quasi-steady 
solutions, corresponds approximately to the boundary of the basin of attraction. For 
initiation energy smaller than the critical value, the detonation initiation fails, the 
strong detonation which is initially formed decays to a weak shock wave. A successful 
initiation of the detonation requires a larger energy source. Transient phenomena 
which are associated with the intrinsic instability of the quasi-steady detonations 
branch develop in the induction timescale and may induce additional mechanisms close 
to the critical condition. In conditions of stable or weakly unstable planar detonations, 
these unsteady phenomena are important only in the vicinity of the critical conditions. 
The criterion of initiation derived in this paper works to a good approximation and 
exhibits the huge numerical factor, 106-10s, which has been experimentally observed 
in the critical value of the initiation energy. 

1. Introduction 
Direct initiation of gaseous detonation by an energy source is an old problem 

(Laffitte 1925; Zeldovich, Kogarko & Simonov 1956) which was reviewed more 
recently by Lee (1977, 1984). Different regimes are identified from the experiments. For 
a subcritical level of the total energy of the igniter if, & < &, the strong overdriven 
detonation wave which is first established decays rapidly, the reaction front separates 
completely from the shock wave, a premixed flame trails behind the shock and no 
detonation is initiated. With an energy larger than the critical threshold value Ec, ES > 
ic, the shock wave and the reaction zone remain coupled and the strong detonation 
originating from the source relaxes to a wave propagating at the constant 
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Chapman-Jouguet (CJ) velocity D",, of the mixture. Everiments show that the onset 
of this CJ detonation occurs at a certain distance R"*(E,) from the point source. The 
order of magnitude of R"*(kS) is obtained by equating the igniter energy Es and the 
chemical energy released within the sphere bounded by the shock, to give Es z 
j j o  QR"*j+l, where j j o  is the density of the initial reactive mixture and 0 is the chemical 
heat release per unit mass, ES is the total energy in spherical geometry ( j  = 2) and the 
energy per unit length and per unit surface in cylindrical ( j  = 1) and planar geometry 
( j  = 0). A critical radius is associated with the critical energy, &= R"*(E,) and 
no CJ detonation can be observed with a front radius R"s smaller than R,. Experiments 
show that R", is about ten to twenty times larger than the cell spacing size which is itself 
ten to fifty times larger than the thickness of the reaction zone in a planar detonation 
(see Desbordes 1986). 

When the multi-dimensional effects are neglected, the problem is represented by a 
system of unsteady one-dimensional conservation equations. The rate of heat release 
introduces a timescale IcJ controlled by the chemical kinetics. Preliminary insight into 
the problem may be obtained by considering IcJ as infinitely small. Two self-similar 
solutions are relevant in two different time ranges of the total evolution. 

(i) At early times, the total heat released by the chemical reactions is negligibly small 
compared to is, and the self-similar solution of Taylor (1950a) and Sedov (1946) for 
strong adiabatic blast waves resulting from an instantaneous deposition of energy at 
a point is valid 

,!?, = k~[~(j+3)1j+1jjO~+3~j+1*Es = k .  3 Po - 5 2 & 1 ,  (1.1a) 

where 0" and R", are the velocity and the radius of the shock wave at any instant of time 
I and kj  is a dimensionless constant of order unity. Different conditions are necessary 
for the relevance of (1.1 a) in the detonation initiation problem : the Mach number of 
the leading shock must be sufficiently large; the finite element of space in which the 
initiation energy E, is deposited must be much smaller than R"*(,!?,); and the deposition 
time Is must be much smaller than f*(ES) which is defined by setting R", = I? in (1.1 a), 
I, 6 I*(,!?,). More precisely, the self-similar law (1.1 a) is valid for the direct initiation 
of detonations in the intermediate range of time, 

I, 6 I4 I*(E,). (l . lb) 

Notice that the radius at which the non-reacting blast wave reaches the CJ velocity, as 
obtained from (1.1 a) in the large-Mach-number approximation D":, z 2(y2 - 1) 0, is 
of the same order of magnitude as A*@,) defined earlier as Es z Po QR"*j+l. 

(ii) At sufficiently long times after a successful initiation, t"> t"*(E,), Es becomes 
negligibly small compared to the energy released by the chemical reaction. And, in the 
case of a stable detonation, the solution is well approximated by the self-sustained 
wave of Zeldovich (1942) and Taylor (1950~) consisting of a smooth detonation front 
expanding at a constant CJ velocity followed by a self-similar rarefaction wave. The 
selection mechanism of the minimum wave speed D",, is understood as follows (see 
Landau & Lifchitz 1989). Faster self-sustained detonations waves are associated with 
a subsonic flow in the reference frame of the leading shock. Thus, the shock intensity 
is continuously weakened (down to CJ) by the rarefaction wave which is characterized 
by a leading weak discontinuity travelling at sonic velocity relatively to the burned 
gases. 

Successful direct initiations of detonations may be considered as a transition from 
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a self-similar solution (i) to a self-similar solution (ii) which both belong to a more 
general set of self-similar explosion waves associated with the deposition of variable 
energy at the front (Barenblatt et al. 1980). The numerical solutions which have been 
carried out to describe such a transition in the limit of an infinitely fast chemical rate 
( l C J + O ) ,  show that the onset of the CJ detonation occurs in spherical geometry at 
R* = (1 .3ES/p,,  0)1/3 for a specific heat ratio of 1.3 (see Korobeinikov 1971) and do not 
exhibit any critical condition ES > Ec as observed experimentally. The existence of the 
critical condition results from the finite value of the reaction rate 1/fcJ controlling the 
detonation thickness TcJ, and thus cannot be described in the limit Tc,.+ 0. 

The existing theoretical models for the critical energy are essentially phenom- 
enological. Zeldovich et al. (1956) provided the first criterion : successful initiation 
occurs when the time necessary for the blast wave to decay to the level of the leading 
shock of a planar CJ detonation is larger than the chemical induction time fC,. The 
correspondins critical initiation energy ,6, may be estimated from (1.1 a) in which is is 
replaced by E,, 6 by ECJ and t" by IcJ .  This criterion yields a critical radius of the same 
order of magnitude as the thickness of the detonation IcJ,  R", - IcJ ,  in contradiction 
with the experimental result R", z 300icJ (see Desbordes 1986). As noticed by Lee 
(1977), the critical energy so obtained, E, - pod:, G J ,  is smaller than the experimental 
data by many orders of magnitude. Other phenomenological criteria have been derived 
(see Lee 1984) in a similar way but by replacing TCJ by larger timescales such as those 
obtained from measurements of cell sizes h or critical tube diameters. Such diameter 
effects have been also investigated theoretically (Zeldovich 1940; Bdzil 1980). Another 
criterion was also proposed based on chemical kinetics considerations (see Lee 1977). 
Comparisons with experiments show that the criterion based on the critical tube 
diameter yields the best correspondence (Lee 1984). 

The purpose of the present work is to provide a theoretical analysis of this critical 
transition involving length- and timescales which are much larger than Ic. and t",, 
characterizing the inner structure of the detonation. It will be shown that the initiation 
threshold of cylindrical and spherical detonations is governed by a nonlinear curvature 
effect of the detonation front, associated with a strong sensitivity of the reaction rate 
to temperature variations. The front curvature which has a tendency to decrease the 
gas temperature competes with the heat release rate. When the temperature sensitivity 
is sufficiently high, a small perturbation (here the curvature effect) is sufficient to 
destroy the quasi-steady structure of the reaction wave, like the extinction mechanisms 
of diffusion and premixed flames (see Liiian 1974; Joulin & Clavin 1976). 

For ordinary mixtures, chemical kinetics introduces a minimum detonation speed 
o"* below which self-ignition cannot proceed sufficiently rapidly behind the leading 
shock because the gas temperature is below a kinetics crossover temperature. This 
could be used to define detonability linits in a similar way to the flammability limits 
studied by He & Clavin (1993). Criteria for initiating a detonation are influenced by the 
proximity of these limits. We will limit our attention here to cases bCJ > 6*. 

The basic equations are presented in $2. The nonlinear curvature effects are studied 
in the quasi-state approximation in $ 3 .  The criterion for detonation initiation is 
presented in $4 where direct numerical simulations are also carried out to verify its 
validity. The last section is devoted to a discussion of the results. 
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2. The basic equations 
When the molecular transport is neglected and when the chemical reaction is 

modelled by an exothermic irreversible one-step reaction, the unsteady and one- 
dimensional conservation equations are 

with (2.1 e, f 1 

for a polytropic gas. In these equtions p ,  p ,  T and e are respectively the reduced 
pressure, density, temperature and specific energy. These variables have been made 
dimensionless by reference to the preshock state labelled by subscript 0: p = a/&,, 
p = p / l 0  T_= f / Z  and e = e“/& Q is the dimensionless heat release parameter Q = Q/  
(cp- C,) T,, where cp and C, are the specific heats at constant pressure and at 
constant volume. The velocity is denoted u after non-dimensionalization through 
division by Z,,/yy2 where Zo is the sound speed at the preshock state and y is the specific 
heat ratio, y = C /c,. The non-dimensional time and space variables t and r are based 
on a reference time fief associated with the induction time f C J  of the planar CJ 
detonation and a reference lengthscale, Fref = fief Z,,/yl/’ which is typically of the same 
order of magnitude as the thickness of the CJ detonation front TcJ .  When the reaction 
is governed by an Arrhenius law, the reduced chemical reaction rate in (2.1 d )  takes the 

? 

where B is the frequency factor, E, the reduced activation energy, and y the reduced 
mass fraction of the limiting species. The reference timescale fief is defined for 
convenience as the induction time at constant pressure: 

where TNcJ is the reduced temperature at the Neumann state of the planar CJ 
detonation. These scalings are such that the reduced induction length and induction 
time of the planar CJ detonation, licJ and rTicJ, are of order unity when E,/T,,, % 1 ,  
see (A 9u, b) in the Appendix. 

In the moving frame attached to the shock, (2 .1~-d)  can be written as 

with reduced space and time coordinates 

5 = R,-r ,  r = t R, = D(t’)dt’, J: 

( 2 . 3 ~ )  

(2.3b) 

(2.3c, d )  

(2.4u, b) 
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where D and R, are the velocity and the position of the shock at any instant of time 
t ,  and v = D-u  is the flow velocity relative to the leading shock wave. The total 
enthalpy is 

A = -  ?' T++v2+yQ. (2.5) 
Y-1 

3. Nonlinear curvature effect 
The reference timescale which has been used in (2.1 a-d) is of the same order of 

magnitude as the induction time t",,. When the characteristic time of evolution is much 
longer than this reaction time, unsteady terms may be neglected in (2.3). This 
corresponds to the quasi-steady-state approximation. Moreover, when the curvature 
radius of the detonation front is much larger than the detonation thickness, R, % 1 ,  6 
may be neglected in the factor (R, - tJ appearing in (2.3 a, b). This is possible whenever 
the relaxation toward the chemical equilibrium ( y  = 0) is sufficiently fast, as for an 
exponential decay of y .  Then, in the framework of such multiple-scales assumptions, 
the governing equations for the structure of a curved detonation reduce at the leading 
order to the following system of first-order ordinary differential equations : 

d C o u ) j  dCov2+p) = --p(D-v)v, j (3.1 a, b)  
d5 R, d6 R, 

= --p(D-v), 

(3.1 c, d )  

where the additional curvature terms on the right-hand sides of (3.1 a, b) have to be 
considered as perturbations l/R, < 1. When they are omitted, (3.1 a-c) reduce to the 
ordinary conservation system describing planar detonations. The quasi-steady 
approximation used in (3.1 a-d) is meaningful whenever the unsteady terms are smaller 
than the perturbative curvature effects. This point will be verified a posteriori and is 
discussed in conclusion. After elimination of p and p, (3.1 a-d) can be written in the 
following form, suitable for the analysis of the detonation structure in the phase space 
v2-y (see Fickett & Davis 1979): 

- _ -  - M Y ,  0, D) ( 3 . 2 ~ )  
dv 

dY W ( Y ,  v, D )  &Y, v,D>' 

with (3.2b) 

where the reaction time o defined by (2.1g), the local sound speed c, and the 
temperature T are expressed in terms of y ,  v, D from the total enthalpy conservation 
as 

( 3 . 2 ~ )  

3.1. Weak curvature effects 
For clarity let us first recall briefly the well-known case j = 0 (or R, = a) corresponding 
to the planar ZND structure of a detonation front propagating at a constant velocity 
in a uniform gas mixture at room temperature (see Zeldovich 1940). The forward front 
of the detonation wave is a non-reactive shock wave in the unburnt gas. The rise in 
temperature ignites the gas mixture and the reaction proceeds downstream and 
continues until the combustion is complete. Such a two-lengthscale structure results 
from the high value of the reduced activation energy yielding a reaction time much 
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FIGURE 1 .  v2-y phase diagam of quasi-steady detonation waves. (a) Planar detonations. (b )  Spherical 
detonations for R, > R,. (c)  Critical condition of spherical detonations, R, = R,. 
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larger than the e-lastic collision time. Thus, solutions of (3.1) or (3.2) are obtained for 
any given velocity D by an integration from the Neumann state, just behind the non- 
reactive leading shock at 6 = 0 ( y  = l), to 6 = + co where the burned mixture is 
assumed to be uniform (piston problem) and at equilibrium ( y  = 0). In the phase space 
v2-y the problem reduces to determining the trajectories, i.e. solution of 

(3.2d) 

with an initial condition v 2  = v&(D) at y = 1 given by the Hugoniot relations in the 
fresh gases. There is a continuum spectrum of possible velocities D which is bounded 
from below by the CJ case D = DcJ. A solution exists for any value D > DcJ with a 
flow which is subsonic everywhere, v < c (overdriven detonation). The marginal CJ 
case D = D,, corresponds to a sonic velocity of the burned gases (v, = c,, y = 0 at 
6 = + co) where, according to ( 3 . 2 ~ ,  b), dv2/dy = - co. There is no solution for D < DcJ 
because the trajectories turn backwards at a point corresponding to a sonic velocity 
v = c and located before the burned gas condition: du2/dy = - 00 at 0 < y < 1 (see 
figure 1 a). The CJ trajectory corresponds to the marginal case where the sonic point 
is exactly at y = 0. The upper branch describes a non-physical supersonic combustion 
process starting at y = 1 from the frozen preshock state. It is worthwhile to recall that 
in the planar case, D,, may be directly obtained by introducing the sonic condition 
v b  = c b  at the burned gases ( y  = 0) into the integrated form of the conservation laws 
(3.1 a-c), without solving (3.2d) which is only useful to determine the detonation 
structure. For a self-propagating detonation, without a moving piston in the burned 
gases at V b  < cb, the physical mechanism of the CJ selection is, as recalled (ii) of 9 1, 
associated with the presence of a rarefaction wave in the burned gases which cannot 
weaken the leading shock any longer when D = D,, (v, = c,). 

The system of equations (3.2~-c) was used with a reaction rate w represented by a 
regular function, to study the detonation structure in slightly divergent flows (Fickett 
& Davis 1979) or with weak curvature effects of the front (Klein & Stewart 1993). The 
approximate equations (3.2a, b) are valid only at the leading order of a multiple-scales 
analysis associated with a small parameter l/R,. Only small perturbations around the 
planar solutions are relevant. For a given value of R, there is a one-parameter family of 
solutions labelled by D. A marginal solution corresponding to a local minimum of D, 
called the ‘generalized CJ solution’ and referred to by D+(R,) in this paper, has been 
found, with a sonic condition v = c occurring at y = y* > 0, before the completion of 
the reaction (see figure 5.40 of Fickett & Davis 1979). This marginal solution is 
qualitatively different from the CJ solution of the planar case; the condition v = c 
corresponds to a saddle point in the phase space u2-y (@ = 0, q5 = 0 but dv2/dy =+ - 00, 

see the D, curve in figure 1 b). Solutions exist for larger detonation velocities, D > D,, 
and they all correspond to overdriven detonations with a subsonic flow (v < c) 
everywhere (0 < y < 1). The trajectory of the marginal solution, D = D,, passes 
through the saddle critical point ( y  = y*) into the supersonic region and, as a 
consequence, this solution is qualitatively different from all the overdriven ones ; the 
flow is subsonic in a first part behind the shock wave, 1 > y > y*, and supersonic in 
the last part of the combustion process y* > y 2 0. For slightly smaller detonation 
velocities, D c D,, the sonic condition v = c corresponds to dv2/dy = - co which 
appears at y > 0 as in the planar case for D < DcJ,  and a solution no longer exists 
because y = 0 cannot be attained. The relation between D and R,, referred below as 
D(R,), was obtained from the marginal solution D, (Klein & Stewart 1993). 

The analysis presented below (see #3.2 and 3.3) shows that there exists another 
branch of marginal solutions D-(R,) (D- < D, see figure 1 b) with solutions for D < 
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FIGURE 2. Detonation velocity as a function of the front radius for the marginal quasi-steady-state 
solutions. Analytical results for the square-wave model: (a) y = 1.4, /I = 5.33, Q = 12.5; (6) y = 1.4, 
/I = 8.53, Q = 12.5; (c) y = 1.4, p = 5.33, Q = 22.8. (a’-c’) Numerical results for an Arrhenius law 
with the same values of the parameters as (a-c) respectively and plotted in the same non-dimensional 
form by using I,,,. 

D-. The D(R,) curve has a C-shaped form with a critical radius R, as presented in figure 
2. This has some analogies with the results obtained by Zeldovich (1940) and developed 
later by others (see Gelfand, Frolov & Nettleton 1990) on quenching phenomena of 
planar detonations propagating in rough tubes. These semi-phenomenological analyses 
were developed in the framework of a planar model of detonations with volumetric 
source terms accounting for heat and momentum losses at the walls. Inspired by the 
pioneering analyses of Zeldovich (1940), we first present in 3 3.2 an anaiytical solution 
of (3.1 a-c) in the framework of a square-wave model yielding a nonlinear relation for 
D(R,). It is shown that for R, > R,, the velocity spectrum of quasi-steady detonations 
is unbounded but presents two extrema; one, D,, being a local minimum and the other, 
D-, a local maximum, with a forbidden band [D,, 0-3. An analytical expression for the 
critical radius R, below which no generalized CJ solution exists, is obtained and it is 
shown that R, is located in the domain of validity of approximated equations (3.1) or 
(3.2) (large radii of curvature, R, 8 1). These results are also compared in 93.3  with 
numerical solutions of (3.1 a-c) for an Arrhenius law. They are used later on for the 
determination of a critical energy of the direct initiation of detonations. 

3.2. Square-wave model 
The square-wave model is defined in a phenomenological way in the following manner. 
The chemical reaction is assumed to proceed in two sequential steps. The heat is 
released during a reaction time r, after a time delay called the induction time ri. The 
square-wave model corresponds to the limit T,/T( + 0, for which the reaction rate w 
becomes singular, and the heat release is localized in a thin exothermic layer considered 
as a discontinuity following the shock wave at a reduced distance li defined as 

l6 = V N  T i ,  (3.3a) 
where the dimensionless induction time ri is highly sensitive only to the temperature 
fluctuations of the Neumann state just behind the shock wave, ST,. Let p = &ITNcJ 
be the large reduced activation energy (Sri/ri)/(STN/TN) = OU), p 8 1 ,  then 

li/licJ = exp { -p( TN - TNcJ)/TNcJ} valid for p 8 1, (3.3b) 
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where subscripts N and CJ denote the Neumann state and the planar CJ case 
respectively and where, by definition of the reference lengthscale used in (2.1 a-d), 
ltc = O( 1). As shown in the Appendix, (3.3 b) may be obtained from an Arrhenius law 
at the leading order of an asymptotic expansion in the distinguished limit, p- + co, 
P(y - 1)2/4y2 = O( l), (y  - 1)2 Q > 1 e (y  - 1) 02, > 1. Equation (3.3 b)  represents the 
minimal model of the detonation structure to include the essential phenomena as well 
as the right orders of magnitude. Such a singular model has defects when describing the 
stability and the intrinsic dynamics of a detonation front which develops on the short 
characteristic timescale 7i (Erpenbeck 1962, 1963). But this model was proved to be 
very useful to describe critical conditions appearing in the quasi-steady mechanisms 
developing on timescales much longer than T( (He & Clavin 1992). 

When attention is focused on the case ,8 + 1 and R, = OV), the curvature terms in 
the right-hand sides of (3.1 a, b) are of the same order of magnitude as 1/p and the 
variations of the Neumann temperature are small, 6TN/TN.= O(l/,8). But strong 
nonlinear effects are included at the leading order of the expansion in the limit p-. + 00 

because, according to the high sensitivity to TN in (3.3b), one has (87J7J = O(1) and 
(61i/lt) = O(1). In the square-wave model, the thickness of the exothermic zone is 
negligibly small and the curvature effects modify only the induction zone which does 
not consume the reactant, y = 1. The thin exothermic zone is described in the phase 
plane by the same equation (3.2d) as in the planar case, but with an initial condition 
v2 = v%(D) at y = 1 which differs from the planar case owing to the curvature effects 
across the induction zone. As for the planar case, the marginal solutions of the square- 
wave model may be obtained directly from the conservation laws across the detonation 
structure without investigating the trajectories in the phase space. These conservation 
laws are readily obtained by a 5-integration of (3.1 a-c) across the detonation structure 
and may be written in a dimensionless form as 

pb vb = D - Or,, (3.4a) 
Pb 0; +Pb = (D2 1)- D"2y (3.4b) 

where the subscript b denotes the burned gases state at y = 0. The source terms of 
( 3 . 4 ~ ~  b), are defined by 

[?'I(?'- ')]Pb/Pb+~V~ = Y/(Y-1)+@2+Q, (3.4c) 

p(D-v)d[, r2 D2 R, (3.5a, b)  

and represent the curvature-induced modifications of mass and momentum fluxes 
across the detonation structure. They are small perturbation terms and when they are 
neglected (3 .4~-c)  reduce to the ordinary Hugoniot relations. Using 1/R, = O(l/p), the 
leading order of r, and r, in the asymptotic limit p- co can be easily computed from 
(3.5a, b) with the square-wave model by using the Neumann values of the planar CJ 
solution for D, v and p :  

where the thickness of the induction zone is given by (3.3 b)  and may be expressed in 
terms of the modification of detonation velocity ( D  - Dc J)/Dc by using the Hugoniot 
relation for the leading shock in the fresh mixture, 
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where the last approximation is valid for a sufficiently strong shock wave ( y  - 1 )  02, > 1, 
yielding 
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By noticing that, according to (3.6~-c) 

( 3 . 6 ~ )  

(3.6d) 

a variation of (3.4~-c) around the marginal solution, defined by an extremum condition 
6D = 0, confirms that such a solution is still determined by the same sonic condition 
in the burned gases as in the planar case: vb = cb = (ypb/pb)ll2. Then, introducing 
vb = ( ~ p ~ / p ~ ) l / ~  in (3.4~-c), a perturbative analysis around the planar CJ detonation 
yields the curvature-induced modification of the detonation velocity ( D  - Dc J )  as a 
linear function of r, = O( 1 /,!?) and r, = O( 1 /P )  : 

Then, nonlinear relations (3.6~-c) yield a nonlinear equation for the velocity D of the 
marginal detonations : 

where the strong-detonations assumption ( (y-  1) DgJ > 1) has been used for 
simplicity. Equation (3.8) yields a nonlinear velocity-radius relation, D(R,), valid in the 
distinguished limit P- co, ,!?licJ/(y- 1) R, = O(l), P(DCJ-D)/Dc,  = O(l), corre- 
sponding to a relatively small curvature intensity. This result exhibits a critical 
radius R,, 

( 3 . 9 ~ )  

below which no solution exits, and a corresponding critical detonation velocity D, 
given by 

D C J - D ~  - 1 
-- 

D C J  2P' 
(3.9b) 

For R, > R,, (3.8) yields two branches of solutions D+(R,) > D-(R,). The physical one 
is the upper one which reaches CJ planar solution from below when R, --t co, D+(R,) + 
DcJ.  The second solution branch, D-(R,), is not physical: in the limit R,+ 00 one 
gets P(DcJ-D)/DcJ+ co which does not correspond to the domain of validity of 
(3.8), P(Dc - D)/Dc  = O( 1). We will discuss later the nature of this second solution 
branch. For weak curvature effects, PlicJ/RS + 0, one gets the following linear relation 
for the upper branch : 

(DcJ -D+)/DcJ = [4y2/(y2 - 1)lj(4cJ/Rs), (3.9c) 

which corresponds to the result of Klein & Stewart (1993) in the particular case of a 
one-step first-order reaction governed by an Arrhenius law at the limit of an infinitely 
large activation energy. Finally, notice that the numerical factor in the right-hand side 
of ( 3 . 9 ~ )  which controls the numerical value of the critical radius, is a larger number 
Sej/(l -yP2) % 90 for y = 1.4 and j = 2 (spherical detonation). Thus, for ordinary 



Direct initiation of gaseous detonations by an energy source 237 

values of the reduced activation energy based on the Neumann temperature, /3= 
Ea/TN,, = 5 to 10, the critical radius is 300 to 1000 times larger than the detonation 
thickness while the corresponding relative modification of the detonation velocity 
(3.9b) is small, 10-1 to 5 x lo-'. In conclusion, the origin of the large value of R,/I,,, 
is clearly exhibited by the square-wave model. 

3.3. Solutions for  an Arrhenius law 
It is instructive to investigate numerically the case of a regular reaction rate such as an 
Arrhenius law (2.lg) with a moderate reduced activation energy /3 = Ea/TN,, = 5 ,  
yielding trajectories in the phase space u2, y whose topological structure is different 
from the singular square-wave model. The system of equations (3.2u, b) is numerically 
integrated with (2.1 g )  by a Runge-Kutta method for a given D with an initial condition 
at y = 1 prescribed by the Hugoniot relation in the fresh mixture. Guided by the results 
presented above, a shooting method is used to find the radius R, corresponding to the 
marginal solution whose trajectory passes through the saddle point, u = c and t,.b = 0, 
in the phase space (see the discussion at the end of $3.1). For a sufficiently large 
activation energy, the D, R, curve so-obtained presents a C-shaped form, as predicted 
by the simplified analysis developed above. These curves are presented in figure 2 for 
different values of the parameters, in a dimensionless form, 2p(D - D,,)/D, us. 
R,/jpliC J ,  which is suitable for comparison with the analytical results of the square- 
wave mode as obtained from (3.6~-c) and (3.7). The agreement is quite satisfactory. 
For a given R, larger than the critical value R, there are two trajectories corresponding 
to two different marginal detonation velocities D+ and D-. As clearly shown in figure 
1 (b), the trajectories corresponding to intermediate velocities of detonation, D- < 
D < D,, are the only ones for which there is no solution because of the presence of 
a singular point dv2/dy = + 03 at y =k 0 (u  = c and t,.b > 0). Thus, there are two 
disconnected continuous ranges of detonation velocities, the upper one (D+, + co) with 
a lower bound D, (local minimum) and another one with an upper bound D-. D- 
decreases and D, increases when R, increases. When R, decreases, the two trajectories 
(in the phase space u2 - y) of the marginal solutions (D+, D-) become closer and closer 
and collapse at R, = Re (see figure 1 c), in such a way that there is no more local 
extrema for R, < Re. Except for the marginal solutions (when they exist), the flow 
behind the leading shock is subsonic everywhere (relatively to the shock) and the shock 
velocity will be continuously decreased by a rarefaction wave developing in the burned 
gases. Thus, only the upper branch D, of marginal solutions (minimum velocity) is 
selected, the other branch of solutions (D- local maximum velocity) cannot be selected 
from below by the rarefaction wave. 

4. Direct initiation 
4.1. Initiation criterion 

Consider now the direct initiation of a detonation by an energy source. As discussed 
in the introduction, the initial condition of the problem may be represented by self- 
similar solutions of a strong adiabatic blast waves (1.1 a) which are represented by 
typical D-R, curves, 1,2, 3 in figure 3 where the C-shaped curve of the marginal quasi- 
steady solutions is also plotted. For self-propagating spherical or cylindrical 
detonations followed by a rarefaction wave, the selection of the generalized CJ solution 
follows the same mechanism as in the planar case (see (ii) in $ 1, the middle of $3.1, and 
the end of $3.3). Only the upper branch D, of the C-shaped curve may attract the 
unsteady solutions originating from the initial blast wave. This D, branch is the only 
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FIGURE 3. Schematic picture illustrating the criterion of detonation initiation governed by the 
nonlinear curvature effects. 1, 2, 3 are the D2-R, curves of the self-similar solutions (4.1) for strong 
adiabatic blast waves for three different values of the source energy. 1, E, < E,; 2, E, = E,; 3, E, > 
E,. The C-shaped curve of the marginal quasi-steady detonations is also plotted for comparison. 
Conditions of case 1 correspond to a subcritical case, and the initiation of a detonation is impossible. 
Cases 2 and 3 correspond roughly to critical and supercritical conditions for the successful initiation 
of detonation. 

solution with a sonic point in the burned-gases region ( y  w 0) and corresponding to a 
minimum of the detonation velocity. Thus, as sketched in figure 3, ignition failures may 
be predicted for source energies E, for which the D-R, curve does not cross the upper 
branch D+ (see case 1 in figure 3). Successful initiations may be expected in the opposite 
case (see case 3 in figure 3). As a result, an approximate critical energy ,!?, may be 
obtained from (1.1 a) by replacing & by R", and o" by o",, 

By using (3.9a, b), one obtains the following result: 

% 

E, w k,p", @lo",". (4.1) 

The same result would be obtained by equating R", and R"*(,!?,) defined in $1. 
Equation (4.2), defining the critical energy, contains a huge factor (R",/&J)i+l = 
(8ejPy2/(y2- l))j+l with an order of magnitude between lo7 and lo9 in the spherical 
case. This shows that the critical radius and the critical energy are much larger than the 
detonation thickness lcJ and the energy p"oo"&.icj (by unity of surface for j = 0, by 
unity of length for j = 1) involved in the Zeldovich et al. criterion (1956), respectively. 
The numerical simulations of a direct detonation initiation by an energy source, 
presented in the following subsection, confirm these theoretical predictions. 

4.2. Numerical results 
The time-dependent solutions of equations (2.1 a-g) are obtained with a numerical 
code recently developed by He (1991) and He & Larrouturou (1994). The numerical 
method combines an upwind TVD shock-capturing method with a treatment of the 
shock wave and non-uniform gridding. This combination treats the shock as a real 
discontinuity and allows us to capture perfectly the Neumann spike. This numerical 
code has been proved to be very efficient in solving unsteady detonation problems with 
high precision such as quenching by thermal gradient (He & Clavin 1992). 
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FIGURE 4. Numerical results of the initiation of spherical detonations. The front velocity is plotted 
as a function of the front radius and is compared with the corresponding marginal solutions for a 
reactive mixture charactericed by-y 1.4, p = 5.33, Q = 12.5 and for four values of the non- 
dimensional source energy E J @ , , D ~ J l ~ J ) :  1, 3.30 x lo7; 2, 5.69 x 10'; 3, 1 . 3 4 ~  los; 4, 2 . 6 4 ~  lo8. 

An amount of energy E, is assumed to be released instantaneously (at constant 
volume) by the igniter in a uniform motionless reactive gas mixture at t = 0. The 
corresponding initial conditions are 

p = p s ,  T = T , ,  y = O ,  u=O,  O < r < r , ,  

Po = T, = y o  = 1, 
(4 .34 I uo = 0, r 2 r,. 

For p ,  b 1, the released energy E, (by unity of surface for j = 0, by unity of length for 
j = 1) is approximately 

E, x g j C 1 p , / ( y - -  1) with gj = [2jn+(j- l)(j-2)]/(j+ 1). (4.3b) 

A very high initial pressure p ,  x 500 (about 15 times larger than the peak pressure of 
the CJ detonation) and a small initial radius r,  = 10-80 (about 10 times smaller than 
the critical radius R,) are used in such a way that a self-similar solution of the strong 
blast wave type (1.1) is developed at the early stages of the calculation. 

The first calculations are performed for different values of the source energy E, in 
spherical geometry with a set of parameters (y = 1.4, Q = 12.5 and E, = 25-p = 
5.33) for which the planar CJ detonation wave is stable. The velocity of the leading 
shock wave so obtained is plotted in figure 4 as a function of the radius of the front 
for four different source energies : 

k,/(j50b:J I"",) = 3.30 x lo7, 5.69 x lo', 1.34 x lo8 and 2.64 x los. 

The C-shaped curve representing the quasi-steady marginal detonations described in 
$3.3 is also plotted in the same figure. 

Case 1, which is associated with the lowest source energy, ~,/(j50b",I"1"",,) = 
3 . 3 0 ~  lo7, corresponds to a slightly subcritical case leading to a failure of the 
detonation initiation. The velocity of the leading shock becomes smaller than the 
critical velocity D, before reaching the critical radius R,. At R,/I,,, = 700, this velocity 
is about D2/D& = 0.2 and the temperature in the reactive mixture compressed by the 
shock is too low to produce a rapid ignition, the chemical reaction front decouples 
from the leading shock. Failures occur for all cases with an initiation energy smaller 
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FIGURE 5. Temperature and pressure profiles at different instants in time for case 1 of figure 4, 
corresponding to an ignition failure. 
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FIGURE 6. Shock wave and reaction front-trajectories for case 1 of figure 4; the position of the 

reaction front is defined as y = 0.5. 

than that of case 1. Typical profiles for pressure and temperature characterizing the 
detonation structure just below the critical radius are shown in figure 5 and the 
exothermic reaction region and shock trajectories are shown on an r-t diagram in 
figure 6. 

Case 4, which is associated with the strongest source energy, &/@,, O”2cJ It J )  = 
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FIGURE 7. Temperature and pressure profiles at different instants in time for case 4 of figure 4, 
corresponding to a successful initiation of a CJ detonation. 

2.64 x lo', corresponds to a successful initiation of the detonation. The upper branch 
of marginal quasi-steady solutions of (3.2a-c) quickly attracts the unsteady blast wave. 
At about R,/licJ = 700 this quasi-steady regime is reached and the numerical solution 
follows closely the D, solution at later times. This upper branch, corresponding to a 
generalized CJ detonation, plays the role of an attractor for the initial blast waves and 
represents with a good accuracy the self-sustained expanding detonations. Typical 
profiles are presented in figure 7. 

Case 3, with an intermediate source energy &/&,&Jf:J) = 1.34 x lo', shows a 
successful initiation but presenting unsteady effects on a short timescale (x ~ O T , , , )  
characterizing the response of the detonation structure. When the trajectory reaches 
the upper D,  branch, galloping oscillations first develop and finally die out later on (see 
figure 8). This shows that, even for a stable planar detonation wave, the first part of 
the upper D, branch is unstable in a neighbourhood of the critical condition (R, = RJ 
According to the numerical results presented in figure 8, the stability limit is about 
R,/licJ = 1200. This one-dimensional detonation instability mechanism is similar to 
the one which is known to appear in the planar case at a sufficiently large reduced 
activation energy EJT,. Let us denote by Pc the corresponding critical value of Eu/TN. 
The stability limit of the D ,  branch may be estimated from that obtained numerically 
in the planar case (Erpenbeck 1962; Lee & Stewart 1990): as a result of the front 
curvature, the decrease of the Neumann temperature TN produces an increase of E,/T, 
yielding the instability shown in figure 8, occurring when > p,. Case 4 is similar to 
case 3 shown in figure 8, but with a negligible maximum amplitude of oscillation. 
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FIGURE 9. Numerical results for the direct initiation of a cylindrical detonation for a reactive mixture 
characterized b y y  = 1.2, P = 5.33, Q = 12.5 and three values of the non-dimensional source energy 
per unit length ES/& D2,,1:,): 1, 1.33 x lo4; 2, 3.40 x lo4; 3, 5.33 x lo4. 

When the source energy E, decreases, the contact point between the trajectory 
of the initial blast wave and the D ,  branch approaches the critical point. The 
maximum oscillation amplitude of the galloping oscillations increases and may lead 
to a failure of the detonation initiation even for E, slightly larger than the critical 
value gJ(&,b:JI:J) x 3.5 x 10'. This is illustrated by case 2 shown in figure 4 with 
Es/( ,G,D~Jl:J)  = 5.68 x 10'. 

The initiation problem is very similar for ranges of parameters ( y ,Q ,  E,) 
corresponding to weakly unstable planar detonation fronts. As explained in the 
following section, the case of very unstable planar fronts (very large reduced activation 
energies) remains open. Results for cylindrical geometry like the ones presented in 
figure 9, are qualitatively similar to those for the spherical geometry. 



Direct initiation of gaseous detonations by an energy source 243 

5. Discussion of the results 
The results presented in this paper show clearly that the criterion for a direct 

detonation initiation by an energy source in cylindrical and spherical geometry is 
directly controlled by nonlinear curvature effects of the detonation front, at least in the 
range of parameters where the planar detonation is not strongly unstable. 

The order of magnitude of the critical radius R“, (3.9a), as obtained analytically with 
the square-wave model, is 300 to 1000 times larger than the induction length TCJ (see 
the end of $3.2), which is in good agreement with the direct numerical simulations of 
detonations initiation reported in $4.2. This order of magnitude is also in agreement 
with the experiments of Desbordes (1986) reported in introduction. Concerning the 
critical energy $, the order of magnitude predicted by (4.2) is in agreement with both 
the direct numerical simulations and the phenomenological expressions which yield the 
best fit with the experimental data like (5)  of Lee (1984). This last expression is based 
on the experimental correlation EC = 13h/4, where h is the cell size. As an example, 
(4.2) yields kc/($o& T:,) = 4.45 x 10’ (spherical case) and kc/(j0 D”;, $,) = 1.87 x lo5 
(cylindrical case) for the same conditions as in figures 4 and 9 respectively, values which 
are less than ten times larger than the numerical results. A similar ratio is obtained for 
the spherical case when (4.2) is compared with the above-mentioned formula of Lee 
and by using his correlation between the cell size and the induction length h M 50iC, 
valid for hydrogen-air mixtures (Lee 1984). 

The critical radius and energy as predicted by (3.9a) and (4.2) are much larger than 
TcJ and Po bLJ @j (the criterion of Zeldovich et al. 1956), essentially because of the 
very large non-dimensional parameter, 8ejpY2/(y2 - 1) NN 300 to 1000, measuring the 
high sensitivity of the detonation structure to the Neumann temperature. As a result 
of this high sensitivity, a small curvature of the detonation front, lcJ/g8 4 1, produces 
a strong effect and the detonation velocity is close to its planar CJ value even at the 
critical condition. 

The approximate character of these theoretical results is due essentially to four 
factors: (i) unsteady effects illustrated by case 2 in figure 4 are not considered; (ii) 
multidimensional effects yielding cellular detonation fronts are also neglected ; (iii) the 
critical condition is obtained in an asymptotic limit corresponding to the square-wave 
model; (iv) the strong non-reactive blast waves approximation (4.1) is used for the 
initial decay of the reactive blast wave. 

When considering the unsteady effects, one must first discuss the validity of the 
quasi-steady-state approximation used in (3.1 a-d) to determine the D, branch of 
solutions acting as an attractor. The characteristic evolution rate of the D, branch 
solutions, l/t, = dD+/dR,, is given far enough from the critical point by (3.9c), 
yielding l/t, = 4jy2(y2- 1)-l ( l i c J / Q 2  (DcJ/licJ). This shows that, when l,,,/R, = 
0(1//3), the unsteady terms neglected in (3.1 a-d) are effectively of the following 
order in the large-radius expansion: ~ ~ ~ , / t ,  = Ow2) .  This approximation does not 
hold close to the critical point where dD+/dR, -+ co but this does not change the final 
results because this divergence affects only a small vicinity of the critical point. 

The quasi-steady state is obviously not valid to represent the unsteady effects related 
to the intrinsic dynamical properties of the marginal solution D ,  involving a 
characteristic timescale of same order of magnitude as f C J .  The CJ planar detonation 
is known to become unstable for a sufficiently high activation energy. As discussed for 
cases 3 and 4 in $4.2 @ =  5.3), the instability mechanism is reinforced when 
approaching the critical point. For a larger activation energy, stronger unsteady effects 
are observed, as in figure 10 @ = 6.4) corresponding to an unstable planar CJ 
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FIGURE 10. Numerical results for the direct initiation of a cylindrical detonation for a reactive mixture 
characterized_ by y = 1.2, /3 = 6.4, Q = 50 and four values of the non-dimensional source energy per 
unit length E 8 / ( i j O B ~ , f ~ , ) :  1 ,  7 . 3 4 ~  lo4; 2, 1.66 x lo5;  3, 4.61 x lo5; 4, 1.71 x lo6. 
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FIGURE 1 1. Numerical results for the direct initiation of a planar detonation for a reactive mixture 
characterized by ?I = 1.4. /I,= 5.33, Q = 12.5 and three values of the non-dimensional source energy 
per unit surface E 8 / @ o D ~ J l c J ) :  1, 28.1; 2, 34.1; 3, 51.87. 

detonation. The critical radius is &I",, z 500 and curve 3 of figure 10 exhibits a 
detonation quenching followed by a sudden re-ignition. Such phenomena have been 
observed experimentally (see for example Desbordes 1986). Thus, the intrinsic 
dynamics cannot always be ignored in the detonation ignition, especially for strongly 
unstable detonations. 

Strong unsteady effects are obviously always present during the first stage of ignition 
but they do not necessarily control the critical conditions. This is demonstrated by 
comparison with numerical studies in planar geometry where the curvature effects are 
absent. The results in figure 11 correspond to the same set of parameters as in figures 
4-9. The critical size is forty times larger than the detonation thickness but it is ten 
times smaller than the critical radius in spherical geometry. This shows that the quasi- 
steady curvature effects are dominant in spherical and cylindrical geometries for 
determining the ignition condition of stable detonations. 
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FIGURE 12. Comparison between the decay of the inert and reactive blast waves at the critical 

condition (case 1 of figure 4). 

Multidimensional effects remain an open question. Cells develop when the smooth 
detonation front loses its stability. In figures 4-9, the linear instability growth rate is 
small enough that developments of cells are not expected to modify the initiation 
criterion. The case of strongly unstable detonations is less clear. 

The square-wave model has been known for a long time to be pathological for the 
intrinsic dynamics of detonation fronts (Erpenbeck 1963). Corresponding to an infinite 
activation energy, it leads to a non-physical spectrum of unbounded growth rates with 
unbounded oscillation frequencies. But it was proved to be a good candidate to 
describe analytically the quasi-steady phenomena of detonations associated with a high 
temperature sensitivity (He & Clavin 1992). 

Finally, as shown by a comparison of the two trajectories of the reactive and non- 
reactive blast waves with the same critical energy (figure 12), the use of self-similar 
solutions of adiabatic blast waves (1.1a) with (3.9a, b) to determine the critical 
condition (4.2), corresponds to a fairly good approximation for the order of magnitude 
of the critical parameters. 

We thank Professor Amable Liiian and Doctor Guy Joulin for fruitful discussions. 

Appendix 
The conservation equation (3.1 c) of the total enthalpy (2.5) yields 

Using (3 .2~)  and (3.ld), one obtains the following equation for the temperature 
distribution : 

dy -- 
u- = -Btrefyexp a 
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When P = E,/TN 9 1, the temperature profile exhibits two lengthscales. The 
temperature variation is relatively weak, 6T/TN = O(l//3) across an induction zone of 
reduced thickness 1, at the end of which the temperature varies strongly 6T/TN = 
O(l/y- 1) within a thin exothermic zone, 6(/li = O(l/P). In the induction zone one 
has 

- _  T - 1 + - 0 + O  1 (j2) - ,  - 21 = l + O ( j ) ,  
TN P ON 

where 0 = O(1). The leading order of the reduced induction length 1, is determined 
by the runaway of 0 which is given by the following equation for a Mach number 
M N  = vN/cN  smaller than l/yl/’: 

Equation (A 4)  is obtained in a straightforward manner from (A 2) by introducing 
expansions (A 3) and definition (2.2). The assumption M N  < l/y’” is valid for 
sufficiently strong shock waves like those involved in detonations. Then, by introducing 
the dimensionless lengthscale li defined as 

1. = 1-M& vN eEaITN-Ea/TNCJ 
1 -yM; a -  

and the dimensionless variable x = [/l ,  (dx/d[ > 0), (A 4a, b) takes the following 
simplified form : 

d 0  dY 1 
- = y eQ+a, 

dx P dx 
- = --by eQ, 

where the non-dimensional parameters a and b characterize the curvature effect and 
the inverse of the heat release respectively, 

If b =  O(1) or b =  o(1) when /I+,, (A 8 4  

one has, according to (A 6b), y z 1 valid in all the induction zone. Then, at the leading 
order of the asymptotic expansion, (A 6a) reduces to dO/dx = exp (0) +a, whose 
solution satisfying the initial condition 0 = 0 at x = 0 is 

o = a x - l n ( 1 - 7 ) .  

The parameter xi characterizing the induction length is defined by the runaway of 0, 

O+co when x+xi,  
and (A 8b) yields 

1 
a 

xi = -ln(l+a).  

In the limit of a small curvature effect, a + 0 => xi + 1, the dimensionless induction 
length is given by (A 5) and thus (3.3 b) is verified. This corresponds to the following 
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dimensional forms for the induction time fcJ and the induction length l,, of the planar 
CJ detonation: 

icJ = I iCJ  ?ref with IicJ = Tic J ~ N c j ,  (A 9b) 

where the reference time- and lengthscales fTef and Fref are defined in $2 in such a 
way that the reduced induction time and length are of order unity, 7icJ = 0(1) and 
licJ = 0(1) when p- a. Notice that according to (A Sc), one has xi = 1 +O(l//3) 
when a = O(l/P). . . .  , 

In the approximation of a strong shock 

( y -  l ) P  > 1 
the Hugoniot relations yields 

and the relations for CJ detonations lead to 

(A 10a) 

(A lob) 

(A 10c) 

(A 11) 

yields a = O(l//3) and b = O(l/p) and the leading order of the induction length is 
given by (A 5). 

The value of the curvature parameter at the critical radius a = a, is obtained by 
anticipating result (3.9a) to give 

U, = (7 - 1)'/4y2. (A 12) 

This is a very small number indeed (a, M 7 x lop3 and 2 x lo-' for y = 1.2 and 1.4 
respectively) yielding, according to (A Sc), a negligible correction to xi = 1. The 
relevant curvature effect is fully included in (A 5 )  through the modification of the 
Neumann temperature TN. From the point of view of the asymptotic expansion, (A 12) 
shows that the validity of model (A 5) and (3.3b) for describing the upper branch D, 
of curved detonation fronts, is extended to the assumption P(7-  1)'/4y2 = 0(1) e- 
a, = O( l /p). This is an even less restrictive assumption than (A l l )  and is well verified 
for all gaseous mixtures. 
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